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Consideration is given to the motion and force equilibrium of a local process (a soliton) in a continu- 

ous f luid medium. Integral characteristics of a soliton are introduced. An equation of  motion, a global 

equation of.force equilibrium, and equations of  force equilibrium along individual axes are obtained 
that include the integral characteristics o.( a soliton. These equations are shown to permit direct evalu- 

atioN o f  the interrelationship o f  the most important parameters of a local process based on generalized 

information ON its structltle. 

Introduct ion.  Many actual processes in a continuous fluid medium (a liquid or a gas) are local, i.e., 
occur in a confined volume of space. Various factors provide long-term steady existence and tbrce equilibrium 
of local processes (solitons). A common approach to the theoretical study of local processes is the investigation 
of evolution equations that correspond to the actual phenomena (waves on deep and shallow water, Rossby 
waves, etc. [1, 21). However, many natural phenomena (as applied to the atmosphere: a hurricane, a tornado, 
and a thermal) are so intricate that their mathematical description is necessarily simplified and the equations 

are solved by numerical methods 131. Theretore, it becomes necessary to evaluate local processes by the char- 
acteristic general parameters that are important in practical applications. 

We considered the motion and force equilibrium of a steady local process as a single whole in a com- 
pressible continuous homogeneous fluid medium. Integral characteristics of the process over the volume of the 
region where it occurs were introduced. Interrelationships between these characteristics were obtained. 

In investigation of local processes, solitons are sometimes singled out as bearers of special properties 

(for example, impact elasticity 11, 21). Within the framework of the current work, these properties are insignifi- 
cant and the terms "local process" and "soliton" will be used as synonyms. 

Strongly and Weakly Localized Processes. The fluid far from the region that is involved in a local 
process is assumed to be motionless. Initially, we introduce an absolute coordinate system tied to the medium 

as a whole. Consideration is given to the pressure p, the mass density p, the velocity v, and the volume density 
of the extraneous force fs at each point of  the absolute space (x, y, z). The extraneous tbrce is assumed to be 

dv 
the sum of all forces (friction, gravity, etc.) except for the inertial three with the volume density fi = P ~ and 

the pressure force with the volume density fp = - grad p [4, 5]. 

We assume that, at an infinitely large distance from the process localization region (PLR), the pressure 
p and the density p are invariable and equal to their undisturbed values p = P0 and p = P0, the fluid is motion- 

less Vo = 0, and the extraneous tbrce is absent f~o = 0. 
For the differences of the fluid pressures and densities at an arbitrary point and in the free space we 

introduce the corresponding notation p a = p - p o ,  p a = p - p 0 .  These differences are assumed to be small in 
comparison with their initial values: 

I p ~ l < < p 0 ,  IPAI<<P() .  (1) 
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Fig. 1. Shift of a local steady process in a continuous fluid medium: x and 
y denote the position of  the absolute and mobile axes at the instant of 
time to; xl and Yl denote the absolute position of the mobile axes at the 
instant of  time h; !-4) streamlines in the mobile system at the instant of 
time to; 5-8) streamlines in the mobile system at the instant of  time q. 

As is well known [4, 5], the pressure and density variations in a barotropic medium are related line- 

arly: 

2 (2) 
Pa = Pa c . 

The differential pressure pa, the differential density pA, the velocity v, and the density of the extrane- 
ous force f~ depend on the coordinates of  the point in the PLR and, generally speaking, differ from the values 

P60 -= O, Pao -= O, % _= O, and [~0 = 0 far from the PLR. 
The indication of process locality is assumed to be the possibility of  determining the process localiza- 

tion such that for arbitrary small positive quantities p', p', v', and f~' the inequalities 

IPAI < P  , Ipal < p ,  v < v ,  L<f~ (3) 

are fulfilled at each point of the space beyond the PLR. Obviously, for fixed 9", P', v', and f~' these inequalities 
are also fulfilled tbr an arbitrary expansion of  the PLR. As a consequence, the shape of the expanded PLR can 
be arbitrary and can be chosen from considerations of  convenience. We usually denote such an expanded re- 
gion by D. 

If  a local process and its PLR shift in the medium, we additionally introduce a mobile coordinate sys- 

tem and tie it to the PLR (Fig. 1). The direction of the process shift in the absolute system is taken to be the 
x axis; the x axes in the two systems coincide. Since the velocity of the process shift in the absolute coordinate 
system is constant v(D) = const, the mobile system moves in the absolute system with exactly the same veloc- 

ity. Thus, 

v ~ . ( D ) = v : ( D ) = 0 ,  v r ( D ) = v ( D ) .  

Let a certain point have mobile coordinates (xo, Yo, zD) and absolute coordinates (x, y, z) at the instant 
of time t. We write vo (xo, Yo, zo) Ibr the mobile velocity at this point and v (x, y, z, t) for the absolute 
velocity. Then, 

YD (XD" YD' 2 D )  = **' (X,  y ,  7., g) "1- V m ,  (4) 
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where v m = -v(D)  is the mobile velocity of  the material far from the PLR. In the mobile system, the physical 

characteristics of  a steady process are time-invariable, as are vo (xo, YD, zo) and Vm. 
The following general characteristics of  a soliton were obtained by integrating the corresponding local 

characteristics over the volume V or the surface S of the PLR [6]: 

mA -= j" p j V ,  differential mass; 

v 

P6 - ~ prdV, integral differential pressure; 

v 

K = j" p~xvdV, momentum; 

v 

1 
Ek -- -~ ~ pv2dV = Eke. + Ekv + Ek:, total kinetic energy; 

v 

l pv~dV, kinetic energy in the x, v, and z directions; 1 ~ 1 J" p~dV,,~ and Ek: ~ E~. ~ -~ .[ pv~dV, Eky --=- ~ -= ~ . 
v v v 

1 ~p~dV, potential energy; 
Ept ~ 2c2p° v 

Eb = mAv2(D)/2, kinetic energy of the equivalent solid body; 

Fp = ~ p d S =  ~pdS - Pof dS = ~padS, resultant (principal vector) of the pressure force (dS is an ele- 

S S S S 

ment of  the surface S directed into the volume); for a closed surface, f d S  = 0 [5]; 

s 

F~ = ~ f~dV, resultant (principal vector) of  the extraneous lbrce: 

v 

f aVav Fi ,I P dt , resultant (principal vector) of the inertial three of the fluid. 

v 

The characteristics mA, K, Ek, Ept, Fp, F s, and F i for a certain flow volume and the corresponding 
equations for determining them are well-known [4, 51, whereas PA and E~ were first introduced by us [6]. They 
have a specific physical meaning and do not need explanation. The quantities mA, PA, K, Ek, and Ept determine 
the process rate, and the resultants of  the tbrces Fp, Fs, and F i determine the interaction of the PLR with the 
medium as a whole. The potential energy Ept has the second order of smallness relative to PA- In many cases, 
Ept << Ek and the kinetic energy is practically the entire energy of the process. 

It follows from the above definitions of  the integral parameters PA and mA that the differential mass 

and the integral differential pressure of  a local process in a barotropic fluid (2) are related as 

p~ = mAc 2 . (5) 

According to the soliton definition (3), there is a PLR such that the local characteristics of the medium 
at its boundary are practically the same as at a large distance. However, a decrease in the process rate as the 
distance increases does not imply that there exists a large PLR for which the integral characteristics of interac- 

tion Fp, F s, and Fi are practically equal to zero. For example, the Ibrce of the PLR interaction with the medium 
Fp depends on the integral of the differential pressure PA over the entire PLR surface S. The enlargement of 
the surface S in a PLR expansion can balance the decrease in Pzx with distance. 

Let us consider a sequence of values of  the integral characteristics of a soliton with an infinite PLR 
expansion. The soliton is regarded as weakly localized if with this expansion the sequence of values of some 

integral characteristic of the process rate (mzx, PA, K, Ek, E p t )  does not have a finite limit or the sequence of 
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values of  some integral characteristic of  the PLR interaction with the medium (Fp, F s, Fi) differs significantly 

from zero. 
The integral characteristics o f  the interaction of  many processes tend to zero with a PLR expansion. 

Such processes occur  exclusively in the PLR without interacting with the medium as a whole. The soliton is 
regarded as strongly localized if with an the infinite expansion o f  the PLR its integral characteristics have lim- 
iting values, being zero tbr the interaction forces: 

K ~ K o , m A ~ mA0, PA ~ PA0' Fp ~ 0 ,  F s ---) 0 ,  F i ~ 0 .  

As follows from the definitions of  the general characteristics of  a soliton, the indicated conditions are 
fulfilled if with an increase in the distance r - -o  oo the local characteristics of  the process rate diminish fairly 

rapidly: 

e t dv IPAI < a r  , [Pal <bre, [vl <cre, -[ff <dre, 

where a,  b, c, and d are certain positive constants o f  the corresponding dimensions, and e < - 4 .  
Subsequently,  to avoid tbrmal mathematical  difficulties related to the calculation of  limits, we will take 

more stringent conditions for strong localization and assume that the PLR can be selected in such a manner 
that the process occurs exclusively in its volume,  so that beyond the PLR the tbl lowing exact equalities are 

fulfilled: 

p A = 0 ,  pa=O, v = 0 ,  f s = 0 .  (6) 

Integral Scalar Moment of a Force. Let  a certain force (for example, the pressure tbrce or the extra- 
neous force) be distributed over  the PLR with the volume density f = !/, +i f , .+  kf:. For the first time we intro- 
duce the [bllowing general characteristic, namely,  the integral scalar moment of  the force 

M = ~ (f r) dV = M,- + My. + M : ,  (7) 

v 

where r = ix + j y  + kz is the radius vector o f  the point of  application of  the torte,  the round brackets represent 

the scalar product,  and 

v v v 

are the components  of  the integral scalar momen t  along the corresponding axes. 
It is easy to show that the quantities Mx, My, and/14= depend on the adopted orientation of  the axes, but 

their sum M is independent o f  it. 
If  a certain force is distributed over  the surface S with the density f, the integral scalar moment  of  the 

force is written in a form similar to expression (7): 

M=~(fr)dS. 
S 

For the pressure lbrce, fp = p(r)dS.  Hence,  the integral scalar moment of  the external pressure three 

p(r)  that acts on the side of the fluid that is located outside (inside) the closed surface S is equal to 

M = j ' p  (r) (dS r ) ,  (7') 

S 
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where the surface element dS is directed, respectively, inward (outward). Here, the components of the integral 
scalar moment are equal, respectively, to 

M , = ~ p ( r ) x d S , ,  M y = f p ( r ) y d S  v, M__=~p(r) zdS_,  
S S S 

For the concentrated forces Fi with the points of  application ri, Eq. (7) is simplified to the utmost: 

M = Z (FI r0} 

The sign of the quantity M characterizes the balance of tensile and compressive tbrces. When M > 0, 
the material on the whole is stretched, and when M < 0, compressed. Thus, if equal tensile forces F are applied 
to the ends of a rod of length /, a direct calculation yields M = FI. For compressive forces, M = -FI. 

Let us consider the integral scalar moment of  a conservative three tor a strongly localized process. 

3 U  
The volume distribution of the conservative |orce depends on its potential f = - grad U = - i - ~ -  x - 

j 3U OU -k--~-. Beyond the PLR, in conformity with definition (6), f = 0. It follows from this condition that U 

in the free space is the same everywhere, U = U0. By subtracting the constant component it is possible to 
provide fulfillment of  the equality U0 = 0. As applied to the volume density of  the pressure tbrce[5], the pres- 
sure p is a potential. The required condition is fulfilled for the differential pressure Pa- 

Substituting the values of the quantities into Eq. (7), we obtain 

M f ( f r ) d V = - j ' x  0U r OU = - - d V - J v - - d V - ~  OU Ox " ~y : --d-fz d r .  (8) 
V V V V 

The first integral of this equation can be represented as 

OU ~& dv dz = M,.=-I I Ixo-;  . 

= -  x - - d r  dv dz = - x dU dv 
OX " " 

d z  , 
(9) 

where it is taken into account that, beyond the PLR boundary, f = 0 by definition. 
In the inner integral we perform integration by parts: 

Since U(-oo) = U(oo) = 0 by the specified condition, the first term in the brackets is equal to zero and 

the integral M, can be written as 

o o  

v 
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Fig. 2. Vertical cross sections of  a PLR in the region D of a steady proc- 
ess: 1-3) streamlines in the mobile coordinate system. 

The result of  calculating M,. and M- is similar: 

M ,  =My = M : =  i U . (1o) 

In particular, the components of the scalar moment of the pressure force Mp are equal to the integral 

differential pressure: 

Mla ~ = Mpy = Mp: = P~.  (10') 

Thus, for the scalar moment of an extraneous conservative force, the following relation is fulfilled: 

Ms= 3I  U . (11) 

which is as follows for the pressure force: 

Mp = 3P a . (11") 

Equation of Soliton Motion. We consider the motion of a local process as a whole in a continuous 
fluid medium. As the region D, we take an imaginary parallelepiped (Fig. 2) with edges parallel to the x, y, 
and z axes. The dimensions, shape, and location of the region D are such that the PLR resides entirely inside 

it. The region D shifts in the absolute space along with the soliton and the PLR. 
In the mobile coordinate system, the PLR and the region D are motionless, and the velocity of  the fluid 

flow is parallel to the lateral surface of the parallelepiped and orthogonal to its bases S1 and $2. 

Equal masses flow through the bases $1 and $2 per unit time: 

¢ 

Q (Sl) = Q ( $ 2 )  = - J p 0  ( V m  K S )  = - P 0 V m S l  . 

s I 

Let us consider the fluid flow rate for an arbitrary cross section of the region D by a p lane  S 
(xt < x < x2) that is parallel to the bases St and $2. Since there is no inflow (outflow) through the lateral surface 
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of the region D and the motion is steady, an invariable amount of material equal to Q(SO flows through S per 

unit time: 

Q (S,) = Q (S) = - I P (vDdS) = - I (Po + Pg) (vm + v.,) dS ,  
S S 

where v.r is the x-component of the absolute velocity; expression (4) was used in substitutions in the second 

equation. 
Elementary manipulations yield 

e (S) = - 9ovmS - v m I p j S  - I 9v.fl S" 
S S 

Taking into account that S = $1 and Q(S) = Q(Sl) and comparing the preceding two equations, we 

obtain 

I pv,dS = -  vm l PadS . 
S S 

This equation is fulfilled tbr arbitrary x. We next integrate Eq. (12) over x from xl to x2: 

x 2 x 2 

J" J'0 ,,ds Jx=-Vm I 
"fl S A I S 

(12) 

Successive integrals over S and x on the two sides of  the equation are equivalent to integrals over the 

volume of the region D: 

I p v f l V = -  v m I pAdV" 
D D 

The integral on the left-hand side of  this equation is the x-component of the soliton momentum and the 

integral on the right is the differential mass of the soliton: 

K,-= mavx (D).  (13) 

Apart from the cross sections that are orthogonal to the x axis, it is also possible to consider the cross 
sections of the region D that are orthogonal to the v and z axes and to obtain corresponding equations for the 

momentum components: 

Ky = mary (D) = 0 ,  K. = may z (D) = 0 .  (14) 

Since the coordinate system is selected so that the v- and z-components of the sotiton velocity are 
equal to zero, vy(D) = v.-(D) = 0, from Eqs. (13) and (14) we have the equation 

K = m~ v ( D ) .  (15) 

Equation of motion (15) relates the momentum, differential mass, and velocity of the soliton. The Ibma 
of the equation is similar to the relation for a solid body. However, the differential mass can be negative. In 

this case, the soliton velocity and momentum are antiparallel. 
It should be noted that the equation of motion was obtained under the fairly general assumptions of  

material continuity and strong localization and stationarity of  the process for an arbitrary volume distribution 

of the acting tortes. 
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Equations of Force Equilibrium of a Soliton. The process is assumed to be strongly localized. As in 
the previous section, we fix the region D in the tbrm of a paraltelepiped oriented along the x, y, and z axes 
(Fig. 2). In the right side of  the region D we isolate a certain part D' that is also in the form of a parallelepi- 
ped. The latter is bounded by the bases S and $2 (SIISlllS2) and the corresponding parts of the lateral faces $3, 

$4, $5, and $6 of the main parallelepiped. The base S is located between $1 and $2 and has an arbitrary coor- 
dinate x (.rl < x < x2). Like the entire region D, its selected pan D' is motionless in the mobile coordinate sys- 
tem. The base $2 and the lateral faces $3, $4, $5, and $6 are outside the PLR and the parameters of  the material 
at them are the same as in the continuous medium as a whole. Corresponding to the coordinate x, the base S 
can dissect the PLR, and here the parameters of the material at this base can differ from the parameters of  the 
medium in the free space far from the PLR. 

We next consider the torce equilibrium of D'. Since the process is steady, from the Euler theorem it 

follows that the x-component of the principal vector of the forces that act on the fluid inside D' is equal to 
zero :  

Fparx = Fm. + F~r + Fi. r = 0 , (16) 

where the individual terms correspond to the pressure force, extraneous tbrce, and inertial torce of  the flowing 
masses. 

The principal vector of  the pressure force is determined by the integral over the surface Spar of  the 
parallelepiped D': 

Spa r Spar Spa r Spa r S 

/ .  
where the surface element dS is oriented into the volume. Here, we used the well-known relation j dS = 0 for 

Spar 

an arbitrary closed surface[5] and the equality PA = 0 on $2, $3, $4, $5, and $6. Therefore, 

Fla~ = I PA dS. 
s 

(17) 

The principal vector of  the extraneous tbrce is defined by the integral over the volume V of  the paral- 

lelepiped D': 

Fs = f f s d V .  (18) 

V 

The principal vector of  the inertial torce is written as [5, 6] 

F i =  I pVD (VDdS)= I PVD (VDdS) + I pvD (VDdS) " 
Spa r S S 2 

Integration over the faces $3 ... $6 is excluded here, since its result is obviously equal to zero because the 
directions of the surface element and the fluid velocity at these faces are orthogonal, dS-l-vo, so that (vr//S) = 0. 

On the face S the element dS is parallel to the x axis and on $2 antiparallel. Therefore, the equation 

(vt~/S) = VD.~dS is fulfilled on S, and (vodS) = -vo.~dS on $2, with VDx = -Vm. 
Hence, the x-component of the inertial tbrce is 

F h. = (pv~x - P0v~n) dS.  
S 
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We now carry out the substitutions p = 90 + PA, Vox = Vx + Vm 

FLr=f ( (po+pa) (vr+vm)2poV~n)dS=RvmfPvmdS+f  pvr2 + v~ f o j S .  
S S S S 

Substitution of expression (12) into the first term results in 

F t, = f p v ) d S -  Vi2n f padS .  
s S 

Using Eqs. (16)-(19), we arrive at the tollowing equation: 

"~ 2 fpAdS + If~.rdV + I pv.~dS- grnI PAdS = O • 
S V S S 

Since this equation 
respect to x: 

(19) 

is fulfilled for an arbitrary coordinate x of  the cross section S, it can be integrated with 

X I S .'t" 1 V A" I S .v I S 

The first, third, and fourth integrals are, in fact, integrals over the volume of the region D that are 

equal to PA, 2Ek,, and -m~xv m = -2Eb, respectively. 
The integration over the volume of the parallelepiped D" in the second term of expression (20) is rep- 

resented in the form of successive integrations: over an arbitrary cross section S that is orthogonal to the x axis 
and then along the coordinate x" that corresponds to the position of  this cross section and lies between x and 

X'~ ." 

• '2 :  i i <'-, 
.t- I ! ,  / A I _ 

We integrate by parts the outer integral with respect to the variable x: 

A" I . 
.v I . S x 5' .I i x S 

We next expand the first term of the difference 

x dx I f~,.dS dS f , , d S - x ,  dx f , , d S .  

Since in the outer integral of  the first term the limits are x2 = x> it is equal to zero. After simple manipulations 

in the second term we write 

x I S .c I S D 

= 0 .  

Here, from definition (6) for a strongly localized process it tollows that the x-component of the principal vector 

of the extraneous force is equal to zero. 
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Therefore, 

J2 = -  xd  L ,  dS = x dx U S. 

.r I . a j  S 

Differentiation of the inner integral with respect to the variable lower limit led to a change of sign. After 

simple manipulations, 

.r t S D 

Thus, .12 is the x-component of  the scalar moment of the extraneous force. Collecting the values of  all 
terms in Eq. (20), we obtain the equation of equilibrium of a local process along the x axis 

Pa + M~r + 2Ek~ - 2Eb = 0 .  (22) 

Considering the cross sections of  the region D that are orthogonal to the y and z axes we arrive at the 

corresponding equilibrium equations 

P6 + M~y + 2Eky = 0 ,  (23) 

P6 + Ms: + 2E,~ = 0 .  (23") 

In these equations, the fourth term (Eb) is absent because, in accordance with the selected system of coordi- 

nates, vy(D) = v-(D) = 0. 
The global equation of force equilibrium for a spatial (three-dimensional) local process is derived by 

adding the equations of equilibrium along the x, y, and z axes: 

3P A + M~ + 2E z - 2E b = 0 .  (24) 

The global equation of force equlibrium for a two-dimensional (plane) local process is obtained by 

adding equilibrium equations (22) and (23) tor two coordinate axes: 

2P A + M  s + 2 E  k -  2E b = 0 .  (24") 

The global equilibrium equation is the most general equation that involves the integral force, dynamic, 
and energy parameters of  a soliton. In combination with the conditions of  equilibrium along the coordinates, 
they, of  course, do not replace the equation of equilibrium at a point or the equation of equilibrium for an 
arbitrary volume. Nonetheless, they open up broad opportunities for assessment and classification of processes 

and offer insight into their essence in steady and quasisteady existence. It should be noted that they were ob- 
tained using only the assumptions of  continuity and homogeneity of  the medium and strong localization of the 

process and the acting forces. With account for Eq. (5), a number of  equivalent forms of  the equilibrium equa- 
tions can be obtained for a barotropic fluid. For example, lbr the global equilibrium equation for a three-di- 
mensional process 

3rn 6c  2 + M  s + 2E k -  2E b = 0 .  

Example 1. A motionless plane vortex soliton in a barotropic medium. We assume that the soliton is 
centrally symmetric, the fluid velocity depends only on the distance from the central point v = v(r) (Fig. 3), 
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Region D 

Fig. 3. Motionless vortex soliton: 1, 2) streamlines. 

v(r) = 0 tbr r > R0 (R0 is the radius of  the region involved in the process), and the extraneous tbrce is absent, 
and therelbre, Ms = 0. From the process immobility it follows that Eb = 0. 

Using (5) and (24), we write the condition tor global equilibrium in the form 

E k = - m A c 2 . 

The analogy of this equation and the well-known Einstein formula appears to be interesting. It should 
be noted that this equation is fulfilled tbr an arbitrary velocity-radius relation v(r). 

Example 2. A motionless spatial soliton in the form of a ring in a barotropic fluid medium that is on 
the whole motionless. Such rings are frequently observed in air (smoke rings or effusion of fumes in the form 

of rings from flues of plants). 
We assume that the ring is of  centrally symmetric circular shape and its cross section is also circular 

(Fig. 4), with air moving only inside the ring and the extraneous force being absent, and therefore, Ms = 0. 
The velocity at each point inside the ring has two components.  One of them (VR) is directed around a 

large circle, and the other (vr), around a small circle. From the equation of force equilibrium tor one of the 

axes it tollows that along the ring 

2EkR + P A = 0 ,  

where EkR is the energy of the velocity component along the ring. 
As follows from Eqs. (23) and (23'), the equation of force equilibrium in the ring cross section appears 

a s  

Ekr + P6 = 0 ,  

where Ek,- is the total energy of two transverse velocity components. Hence we have a relation between the rms 
values of the longitudinal and transverse wind velocities: 

A 1 ^ 
VkR = - ' ~  Vkr  • 

The wind velocity along the ring is ~- - fo ld  smaller than the transverse velocity. This relation is ful- 
filled on the average over the cross section. Here, the total kinetic energy is connected to the differential mass 
of  the ring by a relation that differs from the analogous equation for a plane process by the coefficient: 
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Fig. 4. Motionless ring: a) axonometry; b) longitudinal section; c) cross 
section; I denotes streamlines. 

,~ 

E k = - ~- m 6 c ' .  

Conclusion. The motion and force equilibrium of a local steady process (a soliton) in a continuous 
fluid medium have been considered. An equation of motion has been obtained. According to this equation, the 
overall momentum of a soliton is equal to the product of its differential mass (the total excess mass in its 
volume as compared with the same volume of the free space) and the motion velocity in the medium. With a 
positive excess mass, the soliton momentum and velocity are parallel, and with a negative excess mass (i.e., 
mass deficiency), counterparallel. 

Also, we have obtained a simple, in form, global equation of  torte equilibrium and simple, in form, 
equations of force equilibrium of a soliton along individual coordinate axes, which include integral charac- 
teristics of it over the volume of the region involved in the process. Among these characteristics are the total 
kinetic energy of the soliton, the kinetic energy of the equivalent solid body, the integral excess pressure over 
the soliton volume (a deficiency when the excess is negative), and a new characteristic for the extraneous (ex- 
ternal) force, namely, the integral scalar moment. We have demonstrated the possibilities of using the proposed 
theory in calculating the characteristics of specific local processes based on generalized information on their 
s t r u c t u r e .  

The equation of motion, the global equation of force equilibrium, and the equations of equilibrium 
along the coordinates do not, of course, replace the continuity equation or the Euler equation for torce equilib- 
rium at a point. Nonetheless, they open up broad opportunities for assessment and classification of processes 
and offer insight into their essence in steady and quasisteady existence. 

N O T A T I O N  

p, pressure; p, mass density; PA and pa, differences between the fluid pressure and density at an arbi- 
trary point and in the free space; v(D), absolute velocity of the soliton; v, absolute velocity of the fluid; vo, 
mobile velocity of the fluid; Vm, mobile velocity of the fluid in the free space; fs, volume density of the extra- 
neous force; fi, volume density of  the inertial tbrce; fp, volume density of the pressure force; c, velocity of 
sound; PLR, process localization region; D, arbitrary expansion of the PLR; V, PLR volume; S, PLR surface; 
m~, differential mass of the soliton; Pzx, integral differential pressure of  the soliton; K, soliton momentum; Ek, 
kinetic energy of the soliton; E~, Eky, and Ek:, kinetic energy of the soliton along the x, y, and z axes; Ept, 
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potential energy of the soliton; Eh, kinetic energy of the equivalent solid body; r, radius vector; M, total inte- 
gral scalar moment; M~, M,., and M:, integral scalar moments along the x, y, and z axes, respectively; Ms, total 
integral scalar moment for the extraneous force; Fp, Fs, and Fi, resultants of the pressure force, extraneous 
force, and inertial force, respectively. Subscripts: A, differential quantity; D, in the mobile coordinate system; 
m, mobile: s, extraneous; i, inertia; p, pressure; k, kinetic; x, y, z, coordinate axes; pt, potential; b, solid body; 
O, undisturbed. 
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